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ABSTRACT

We present estimates of cosmological parameters from the application of the Karhunen-Loève transform
to the analysis of the 3D power spectrum of density fluctuations using Sloan Digital Sky Survey galaxy
redshifts. We use Ωmh and fb = Ωb/Ωm to describe the shape of the power spectrum, σL

8g for the (linearly
extrapolated) normalization, and β to parametrize linear theory redshift space distortions. On scales
k . 0.16hMpc−1, our maximum likelihood values are Ωmh = 0.264 ± 0.043, fb = 0.286 ± 0.065, σL

8g =
0.966±0.048, and β = 0.45±0.12. When we take a prior on Ωb from WMAP, we find Ωmh = 0.207±0.030,
which is in excellent agreement with WMAP and 2dF. This indicates that we have reasonably measured
the gross shape of the power spectrum but we have difficulty breaking the degeneracy between Ωmh and
fb because the baryon oscillations are not resolved in the current spectroscopic survey window function.

Subject headings: cosmology: theory — galaxies: distances and redshifts — large-scale structure of the
universe — methods: statistical

1. introduction

Redshift surveys are an extremely useful tool to study the large scale distribution of galaxies. Of the many possible
statistical estimators the power spectrum of the density fluctuations has emerged as one of the easiest to connect to
theories of structure formation in the Universe, especially in the limit of Gaussian fluctuations where the power spectrum
is the complete statistical description. There are several ways to measure the power spectrum (for a comparison of
techniques see Tegmark et al. 1998). Over the last few years, the Karhunen-Loève method (Vogeley & Szalay 1996, ,
hereafter VS96) has been recognized as the optimal way to build an orthogonal basis set for likelihood analysis, even if
the underlying survey has a very irregular footprint on the sky. A variant of the same technique is used for the analysis
of CMB fluctuations (Bond, Jaffe, & Knox 2000).

The shape of the power spectrum is well described by a small set of parameters (Eisenstein & Hu 1998). For redshift
surveys, it is of particular importance to consider the large-scale anisotropies caused by infall (Kaiser 1987). Using a
forward technique that compares models directly to the data, like the KL-transform, enables us to easily consider these
anisotropies in full detail. Here we present results of a parametric analysis of the shape of the fluctuation spectrum for
the SDSS galaxy catalog.

2. data

2.1. Sloan Digital Sky Survey
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The Sloan Digital Sky Survey (SDSS; York et al. 2000; Stoughton et al. 2002) plans to map nearly one quarter of the
sky using a dedicated 2.5 meter telescope at Apache Point Observatory in New Mexico. A drift-scanning CCD camera
(Gunn et al. 1998) is used to image the sky with custom set of 5 filters (ugriz) (Fukugita et al. 1996; Smith et al. 2002) to
a limiting Petrosian (1976) magnitude of mr ∼ 22.5. Observations are calibrated using a 0.5 meter photometric telescope
(Hogg, Finkbeiner, Schlegel, & Gunn 2001). After a stripe of sky has been imaged, reduced, and astrometrically calibrated
(Pier et al. 2003) , additional automated software selects potential targets for spectroscopy. These targets are assigned to
3◦ diameter (possibly overlapping) circles on the sky called tiles (Blanton et al. 2003a). Aluminum plates drilled from the
tile patterns hold optical fibers that feed into the SDSS spectrographs (Uomoto et al. 1999). The SDSS Main Galaxy
Sample (MGS; Strauss et al. 2002) will consist of spectra of nearly one million low redshift (〈z〉 ∼ 0.1) galaxies creating
a three dimensional map of local large scale structure.

2.2. Large Scale Structure Sample

Considerable effort has been invested in preparing SDSS MGS redshift data for large scale structure studies. The first
task is to correct for fiber collisions. The minimum separation between optical fibers is 55′′ which causes a correlated loss
of redshifts in areas covered by a single plate. Galaxy targets that were not observed due to collisions are assigned the
redshift of their nearest neighbor. Next the sky is divided into unique regions of overlapping spectroscopic plates called
sectors. The angular completeness is calculated for each sector as if the collided galaxies had been successfully measured.
Galaxy magnitudes are extinction-corrected with the Schlegel, Finkbeiner, & Davis (1998) dust maps, then k-corrections
are applied and rest frame colors and luminosities are calculated (Blanton et al. 2003b). Subsamples are created by
making appropriate cuts in luminosity, color, and/or flux. A luminosity function is then calculated for each subsample
(Blanton et al. 2003c) and used to create a radial selection function assuming Ωm = 0.3 and ΩΛ = 0.7 cosmology.

This analysis considers two samples of SDSS data, which we will label sample 10 and sample 12. Both samples were
prepared in similar manners, although using different versions of software. Sample 12 represents a later state of the survey
and the sample 10 area is contained in sample 12. Sample 10 represents 1983.39 completeness-weighted square degrees of
spectroscopically observed SDSS data and 165,812 MGS redshifts. Sample 12 has 205,484 redshifts over 2406.74 square
degrees. Both samples are larger than the 1360 square degrees of spectroscopy in data release 1 (DR1; Abazajian et al.
2003) of the SDSS. The geometry of the samples and DR1 are qualitatively similar, consisting of two thick slices in the
northern cap of the survey and three thin stripes in the south. The samples used have a luminosity cut of −19 ≥ Mr ≥ −22,
where h = 1.0 and M∗ = −20.44 (Blanton et al. 2003c). Rest frame quantities (ie absolute magnitudes) are given for the
SDSS filters at z=0.1, the median depth of the MGS. In a study of the two point correlation function of SDSS galaxy
redshifts, Zehavi et al. (2002) found that the bias relative to M∗ galaxies varies from 0.8 for galaxies with M = M∗ + 1.5
to 1.2 for galaxies with M = M∗ − 1.5. Norberg et al. (2001) found similar results for the 2dF, with the trend becoming
more pronounced at luminosities significantly greater than L∗. The dependence of clustering strength on luminosity
could induce an extra tilt in the power spectrum because more luminous galaxies contribute more at large scales and less
luminous galaxies contribute more at small scales due to the number of available baselines. We minimize this effect by
staying within M = M∗± ∼ 1.5. A uniform flux limit of mr ≤ 17.5 was applied, leaving 110,345 redshifts for sample 10
and 134,141 for sample 12. Although there are luminosity limits for this sample, it is essentially a flux limited sample
with a (slowly) varying selection function. We used galaxies in the redshift range 0.05 ≤ z ≤ 0.17.

3. algorithm

3.1. The Karhunen-Loève Eigenbasis

Following the strategy described in VS96, the first step in a Karhunen-Loève (KL) eigenmode analysis of a redshift
survey is to divide the survey volume into cells and use the vector of galaxy counts within the cells as our data. This
allows a large compression in the size of the dataset without a loss of information on large scales. Our data vector of
fluctuations d is defined as

di = ci/ni − 1 (1)

where ci is the observed number of galaxies in the ith cell and ni = 〈ci〉 is its expected value, calculated from the angular
completeness and radial selection function. The data is “whitened” by the factor 1/ni to control shot noise properties in
the transform (VS96). We call this the “overdensity” convention.

The KL modes are the solutions to the eigenvalue problem RΨn = λnΨn with the correlation matrix of the data given
by

Rij = 〈didj〉 = ξij + δij/ni + ηij/(ninj) (2)

where ξij is the cell-averaged correlation matrix, δij/ni is the shot noise term, and ηij/(ninj) can be used to account for
correlated noise (not used in this analysis). The most obvious source of correlated noise in the MGS would be differences
in photometric zero points between different SDSS imaging runs, which would result in “zebra stripe” patterns of density
fluctuations. The MGS selection has a magnitude limit, but no color selection terms, so the variation in target density
depends only linearly on the photometric calibration. The r band zero point variation is 0.02 mag rms (Abazajian et al.
2003), indicating that the density variation should be . 2%. The transformed data vector B is the expansion of d over
the KL modes Ψn:
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d =
∑

n

BnΨn. (3)

The KL basis is defined by two properties: orthonormality of the basis vectors, Ψm · Ψn = δmn, and statistically
orthogonality of the transformed data, 〈BmBn〉 = 〈B2

n〉δmn.

3.2. The Correlation Function in Redshift Space

In order to directly compare cosmological models to our redshift data using a two point statistic we must calculate the
redshift space correlation function ξ(s)(ri, rj), where ri and rj describe positions in the observable angles and redshift.
The infall onto large scale structures affects the velocities of galaxies leading to an anisotropy in redshift space for a power
spectrum that is isotropic in real space (Kaiser 1987). Szalay, Matsubara, & Landy (1998) derived an expansion of the
correlation function that accounts for this anisotropy in linear theory for arbitrary angles. The expansion is

ξ(s)(ri, rj) = c00ξ
(0)
0 + c02ξ

(0)
2 + c04ξ

(0)
4 + ..., (4)

ξ
(n)
L (r) = 1

2π2

∫

dkk2k−njL(kr)P (k) (5)

where the cnL coefficients are polynomials of β and functions of the relative geometry of the two points. The quantity
β relates infall velocity to matter density and is well approximated by the fitting formula β = Ω0.6

m /b where b is the bias
parameter. Further terms in Eq. (4) are negligible as long as 2 + ∂lnφ(r)/∂lnr (where r is the distance to the cell and
φ(r) is the radial selection function) does not significantly differ (ie orders of magnitude) from unity. For the redshift
range considered in this analysis |2 + ∂lnφ(r)/∂lnr| . 4. When using counts-in-cells, we must calculate the cell-averaged
correlation matrix

ξij =

∫

d3r1

∫

d3r2ξ
(s)(r1, r2)Wi(xi − r1)Wj(xj − r2) (6)

where Wi(y) is the cell window function and xi is the position of the ith cell. To be precise, Wi(y) should describe
the shape of the cell in redshift space. Numerical calculation of this multi-dimensional integral can be computationally
expensive. However, for the case of spherically symmetric cells we can change the order of integration and perform the
redshift space integrals in Eq. (6) analytically before the k-space integral in Eq. (5). If both cells have the same window
function, we can use Eq. (4) as our cell-averaged correlation function (with ri and rj indicating the cell positions) if we

replace P (k) with P (k)W̃ 2(k) in Eq. (5) where W̃ (k) is the Fourier transform of the cell window function. This results
in a one dimensional numerical integral. The full technical details of our method will be presented in Matsubara et al.
(2004, in preparation).

We used hard spheres as our cell shape and placed them in a hexagonal closest packed (the most efficient 3D packing,
with a 74% space-filling factor) arrangement. The current slice-like survey geometry and packing arrangement causes
some spheres to partially protrude outside the survey. The effective fraction of the sphere that is sampled is also affected
by the angular completeness of our survey (which averages ∼ 97%). We calculate our expected counts as if the sphere
was entirely filled and multiply the observed galaxy counts by 1/fi where fi is the fraction of the ith sphere’s volume
that was effectively sampled. This sparser sampling also increases the shot noise by a factor of 1/fi. Cells with fi < 0.65
were rejected as too incomplete. We found that a 6h−1Mpc sphere radius allowed us to fill the survey volume with a
computationally feasible number of cells without the spheres protruding too much out of the survey, while smoothing on
sufficiently small length scales so that we do not lose information in the linear regime (2π/k & 40h−1Mpc). We used
14,194 cells for sample 10 and 16,924 for sample 12.

The calculation of the sampling fraction for each cell is difficult due to the complicated shapes of the sectors (§2.2). We
created a high resolution angular completeness map in a SQL Server database using 107 random angular points over the
entire sky. Each point was assigned a completeness weighting by finding which sector contained the point or setting the
completeness to zero for points outside the survey area. We used a Hierarchical Triangular Mesh (HTM; Kunszt, Szalay,
& Thakar 2001) spatial indexing scheme to find all points in the completeness map that pierce a cell and calculate the
volume weighted completeness for that cell.

3.3. Eigenmode Selection

The KL transform is linear, so there is no loss of information if we use all of the eigenmodes. However, if we perform
a truncated expansion we can use the KL transform for compression and filtering. The difference between the original

data vector and a truncated reconstruction, d̂ =
∑M<N

i=1 BiΨi, where we use only M out of a possible N modes can be

related to the eigenvalues of the excluded modes by (d − d̂)2 =
∑N

i=M+1 λi. The error is minimized (in a squared sense)
when we retain modes with larger eigenvalues and drop modes with smaller eigenvalues, which is sometimes called optimal
subspace filtering (Therrien 1992).

The eigenvalue of a KL mode is also related to the range in k-space sampled by that mode. Our models assume
that linear theory is a good approximation, which is only valid on larger scales. Consequently we only wish to use KL
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modes that fall inside a “Fermi sphere” whose radius is set by our cutoff wavenumber kf . If we sort modes by decreasing
eigenvalue, they will densely pack k-space starting from the origin. The modes resist overlapping in k-space due to
orthogonality. The shape of a KL mode in k-space resembles the Fourier transform of the survey window function. This
means that the number of KL modes within the “Fermi sphere” depends mostly on the survey window function and does
not drastically change if we change the size of our cells, as long as we have significantly more cells than modes (which
means that our cells must be smaller than the cutoff wavelength). In a fully three dimensional survey the modes would
fill k-space roughly spherically and M ∝ k3

f . However, the current SDSS geometry resembles several two dimensional
slices, resulting in KL modes that resemble cigars in k-space. These modes pack layer-by-layer into spherical shells whose
diameters are integer multiples of the long axis of the mode. See Fig. 5 in Szalay et al. (2003) for a visualization. This
results in a scaling more like M ∝ k2

f .
In choosing the number of KL modes to use in our analysis we try to keep as many modes as possible for better

constraints on our parameter values while requiring that our modes are consistent with linear theory. We have developed
a convenient method for determing the range in k-space probed by each KL mode. We separate the integral in Eq. (5)
into bandpowers in k. This allows us to determine how strongly each mode couples to each bandpower, which shows a
coarse picture of the spherically averaged position of the mode in k-space. Fig. 1 shows a grayscale image of how the
modes couple to the bandpowers. Once we choose a value for the cutoff wavenumber kf , we truncate our expansion at
the mode where wavenumbers larger than kf start to dominate.

We can use the statistical properties of the transformed data to check that we are avoiding non-linearities. A rescaled
version of the KL coefficients bn = Bn/

√
Ψn should be normally distributed. Non-linear effects would cause skewness

(third moment) and/or kurtosis (fourth moment) in the distribution of bn. We do not see evidence of non-linear effects
when we use kf . 0.16hMpc−1 (corresponding to length scales 2π/kf & 40h−1Mpc). This value for the cutoff wavenumber
leaves us with 1500 modes for sample 10 and 1850 modes for sample 12.

3.4. Model Testing

We estimate cosmological parameters by performing maximum likelihood analysis in KL space. The likelihood of the
observed data given a model m is

L(B|m) = (2π)−M/2|Cm|−1/2 exp
[

− 1
2B

T C−1
m B

]

(7)

where Cm is the covariance matrix and can be calculated as the projected model correlation matrix,

(Cm)ij = 〈BiBj〉m = ΨT
i RmΨj . (8)

Our method is based upon a linear comparison of models to data, thus the Rm (and Cm) model matrices only contain
second moments of the density field. This linear estimator is computationally more expensive than quadratic or higher
order estimators, but the results are less sensitive to non-linearities. For a comparison of different estimation methods,
see Tegmark et al. (1998).

In practice we must decide on an explicit parametrization. We construct a power spectrum assuming a primordial
spectrum of fluctuations with a spectral index ns = 1. We use a fitting formula from Eisenstein & Hu (1998) to
characterize the transfer function, including the baryon oscillations. We fit for Ωmh and fb = Ωb/Ωm while taking a
prior of H0 = 72 ± 8 km s−1 from the Hubble key project (Freedman et al. 2001) and fixing TCMB = 2.728K (Fixsen
et al. 1996). We fit the linearly extrapolated σL

8g for normalization, where σL
8g = bσ8m and b is the bias. Linear theory

redshift-space distortions are characterized by β (see §3.2).
In order to search an appreciable portion of parameter space we have developped efficient methods to calculate the

model covariance matrices Cm. The straightforward approach would be to calculate the model correlation matrix for a
set of parameters and then project into the KL basis and calculate a likelihood, but this is computationally expensive.
The covariance matrix can easily be written as a linear combination of matrices and powers of σL

8g and β (see §3.2), so we
can project pieces of the correlation matrix and add them in the appropriate proportions for those parameters. However,
the shape of the power spectrum depends on Ωm, fb, and H0 in a non-trivial way. We project each bandpower of the
correlation matrix (see §3.3) separately and add the pieces of the covariance matrix together with appropriate weighting
to represent different power spectrum shapes. This alleviates the need for further projections. We must be careful when
choosing our bandpowers so that we retain sufficient resolution to accurately mimic power spectrum shapes (especially
baryon oscillations), but we must also be careful that our k ranges are large enough that the integrals converge correctly.

Note that a non-optimal choice of fiducial parameters does not bias our results, but it can result in non-minimal error
bars. This procedure can be iterated if necessary.

4. results and discussion

Our best-fit maximum-likelihood parameter values for samples 10 and 12 are presented in Table 1. Results are given
for the priors described in §3.4 and also when using the additional prior Ωb = 0.047 ± 0.006 from WMAP (Spergel et
al. 2003). We show the results of sample 10 and 12 to give some indication of sample variance, although sample 10 is a
subset of sample 12.
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The middle column of Fig. 2 shows the marginalized one-dimensional and two-dimensional confidence regions for the
power spectrum shape parameters Ωmh and fb for sample 10 without the additional prior on Ωb. There is a strong corre-
lation between Ωmh and fb. The gross shape of the power spectrum (ie ignoring the baryon oscillations and concentrating
on the position of the peak and slope of the tail) is nearly constant along the ridge of this correlation due to a degeneracy
between shifting the position of the peak with Ωmh and adding power to the peak with fb. However, the strength of
the baryon oscillations varies significantly over this range. Table 1 shows that our estimates of Ωmh agree well with the
WMAP value of 0.194 ± 0.04 (Spergel et al. 2003) and the 2dF value of 0.20 ± 0.03 (Percival et al. 2001) when we use
the additional prior on Ωb, and the associated confidence regions are shown in the left column of Fig. 2. The results
with the Ωb prior indicate that the gross shape of the power spectrum we measure is consistent with WMAP and 2dF,
as can be seen in Fig. 3 which shows the (isotropic) real-space power spectra inferred from the cosmological parameter
estimates from the three surveys. However, the results without the Ωb prior show that we have difficulty breaking the
degeneracy between Ωmh and fb because the baryon oscillations are not resolved due to the current state of the SDSS
window function.

The right column of Fig. 2 shows the marginalized one-dimensional and two-dimensional confidence regions for σL
8g

(normalization) and β (distortions) for sample 10. Again there is a strong correlation between these parameters, which is
expected from their dependence on b. Our constraint on σL

8g is strong, but we can only measure β to ∼ 20% which limits
our ability to perform an independent estimate of b. We can compare our results to WMAP by examining the combination
of parameters σL

8gβ = σL
8mΩ0.6

m , for which we obtain the value 0.44 ± 0.12, in excellent agreement with the WMAP result
of 0.44 ± 0.10 (Spergel et al. 2003). By combining our measurements with WMAP results we find b = 1.07 ± 0.13 for
our galaxy sample, but this compares information dominated by galaxies with redshifts 0.1 . z . 0.15 to present-day
matter. If we use a ΛCDM model to extrapolate to the present, we would find b ≈ 1.16. Our galaxies cover a range of
luminosities but our signal is dominated by the more luminous galaxies (brighter than L∗) because there are more long
baselines available for the more distant galaxies. This must be kept in mind when comparing our measurement of σL

8g

with other estimates using SDSS data which focus on L∗ galaxies (Szalay et al. 2003; Tegmark et al. 2003)
This analysis used less than one third of the data that will comprise the completed SDSS survey. Our ability to measure

cosmological parameters will increase as the survey area increases, but we should also gain leverage in resolving features
in the power spectrum as our survey window function becomes cleaner. The thickest slice of data from the samples used
was roughly 10◦, implying a thickness of ∼ 50h−1Mpc at z ∼ 0.1. As the slices become thicker, the KL modes will become
much more compact in that direction in k-space. Thus we will benefit from the change in the survey aspect ratio in
addition to the increase in survey area.
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Table 1

Best Fit Parameter Values

10 10 + Ωb 12 12 + Ωb

Ωh 0.264± 0.043 0.207 ± 0.030 0.270± 0.057 0.229± 0.029
fb 0.286± 0.065 0.163 ± 0.031 0.233± 0.088 0.149± 0.026
σL

8g 0.966± 0.048 0.971 ± 0.049 0.978± 0.043 0.980± 0.043
β 0.45 ± 0.12 0.44 ± 0.12 0.44 ± 0.11 0.43 ± 0.11

Note. — Maximum likelihood parameter values and 68% confi-
dences (marginalized over all other parameters). Ωb indicates that a
WMAP prior was used.
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Fig. 1.— Grayscale image of wave number vs. mode number. The horizontal red line indicates kf = 0.16hMpc−1. The vertical black line
indicates the truncated number of modes used for likelihood analysis.
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Fig. 2.— Likelihoods for parameters using sample 10. The left column shows the power spectrum shape parameters with an Ωb prior.
The middle column shows the power spectrum shape parameters without an Ωb prior. The right column shows normalization and distortion
parameters. The contours in the joint parameter plots are the two-dimensional 1, 2, and 3 σ contours. The points in the fb vs. Ωmh plots
are MCMC points from WMAP (alone). Parameter combinations not plotted are nearly uncorrelated.
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Fig. 3.— Plots of the real space P(k) from best-fit model parameters for SDSS (sample 10 with and without the Ωb prior), WMAP, and
2dF. All use σL

8g from the SDSS for normalization. The vertical dotted lines indicate the range in k used in the SDSS analysis.


